Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming
نویسندگان
چکیده
In this paper, we investigate the secure transmission in wireless sensor networks (WSNs) consisting of one multiple-antenna base station (BS), multiple single-antenna legitimate users, one single-antenna eavesdropper and one multiple-antenna cooperative jammer. In an effort to reduce the scheduling complexity and extend the battery lifetime of the sensor nodes, the switch-and-stay combining (SSC) scheduling scheme is exploited over the sensor nodes. Meanwhile, transmit antenna selection (TAS) is employed at the BS and cooperative jamming (CJ) is adopted at the jammer node, aiming at achieving a satisfactory secrecy performance. Moreover, depending on whether the jammer node has the global channel state information (CSI) of both the legitimate channel and the eavesdropper's channel, it explores a zero-forcing beamforming (ZFB) scheme or a null-space artificial noise (NAN) scheme to confound the eavesdropper while avoiding the interference to the legitimate user. Building on this, we propose two novel hybrid secure transmission schemes, termed TAS-SSC-ZFB and TAS-SSC-NAN, for WSNs. We then derive the exact closed-form expressions for the secrecy outage probability and the effective secrecy throughput of both schemes to characterize the secrecy performance. Using these closed-form expressions, we further determine the optimal switching threshold and obtain the optimal power allocation factor between the BS and jammer node for both schemes to minimize the secrecy outage probability, while the optimal secrecy rate is decided to maximize the effective secrecy throughput for both schemes. Numerical results are provided to verify the theoretical analysis and illustrate the impact of key system parameters on the secrecy performance.
منابع مشابه
An efficient solution for management of pre-distribution in wireless sensor networks
A sensor node is composed of different parts including processing units, sensor, transmitter, receiver, and security unit. There are many nodes in a sensor unit. These networks can be used for military, industrial, medicine, environmental, house, and many other applications. These nodes may be established in the lands of enemies to monitor the relations. Hence, it is important to consider conse...
متن کاملMitigating Node Capture Attack in Random Key Distribution Schemes through Key Deletion
Random Key Distribution (RKD) schemes have been widely accepted to enable low-cost secure communications in Wireless Sensor Networks (WSNs). However, efficiency of secure link establishment comes with the risk of compromised communications between benign nodes by adversaries who physically capture sensor nodes. The challenge is to enhance resilience of WSN against node capture, while maintainin...
متن کاملA Secure Routing Algorithm for Underwater Wireless Sensor Networks
Recently, underwater Wireless Sensor Networks (UWSNs) attracted the interest of many researchers and the past three decades have held the rapid progress of underwater acoustic communication. One of the major problems in UWSNs is how to transfer data from the mobile node to the base stations and choosing the optimized route for data transmission. Secure routing in UWSNs is necessary for packet d...
متن کاملToward an energy efficient PKC-based key management system for wireless sensor networks
Due to wireless nature and hostile environment, providing of security is a critical and vital task in wireless sensor networks (WSNs). It is known that key management is an integral part of a secure network. Unfortunately, in most of the previous methods, security is compromised in favor of reducing energy consumption. Consequently, they lack perfect resilience and are not fit for applications ...
متن کاملCooperative Strategies for Wireless-Powered Communications
Radio frequency (RF) energy transfer and harvesting has been intensively studied recently as a promising approach to significantly extend the lifetime of energy-constrained wireless networks. This technique has a great potential to provide relatively stable and continuous RF energy to devices wirelessly, it thus opened a new research paradigm, termed wireless-powered communication (WPC), which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016